Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067488

RESUMO

MOTIVATION: A protein can be represented in several forms, including its 1D sequence, 3D atom coordinates, and molecular surface. A protein surface contains rich structural and chemical features directly related to the protein's function such as its ability to interact with other molecules. While many methods have been developed for comparing the similarity of proteins using the sequence and structural representations, computational methods based on molecular surface representation are limited. RESULTS: Here, we describe "Surface ID," a geometric deep learning system for high-throughput surface comparison based on geometric and chemical features. Surface ID offers a novel grouping and alignment algorithm useful for clustering proteins by function, visualization, and in silico screening of potential binding partners to a target molecule. Our method demonstrates top performance in surface similarity assessment, indicating great potential for protein functional annotation, a major need in protein engineering and therapeutic design. AVAILABILITY AND IMPLEMENTATION: Source code for the Surface ID model, trained weights, and inference script are available at https://github.com/Sanofi-Public/LMR-SurfaceID.


Assuntos
Algoritmos , Software , Proteínas de Membrana
2.
NAR Genom Bioinform ; 5(1): lqad030, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968431

RESUMO

Most cell-cell interactions and crosstalks are mediated by ligand-receptor interactions. The advent of single-cell RNA-sequencing (scRNA-seq) techniques has enabled characterizing tissue heterogeneity at single-cell level. In the past few years, several methods have been developed to study ligand-receptor interactions at cell type level using scRNA-seq data. However, there is still no easy way to query the activity of a specific user-defined signaling pathway in a targeted way or to map the interactions of the same subunit with different ligands as part of different receptor complexes. Here, we present DiSiR, a fast and easy-to-use permutation-based software framework to investigate how individual cells are interacting with each other by analyzing signaling pathways of multi-subunit ligand-activated receptors from scRNA-seq data, not only for available curated databases of ligand-receptor interactions, but also for interactions that are not listed in these databases. We show that, when utilized to infer ligand-receptor interactions from both simulated and real datasets, DiSiR outperforms other well-known permutation-based methods, e.g. CellPhoneDB and ICELLNET. Finally, to demonstrate DiSiR's utility in exploring data and generating biologically relevant hypotheses, we apply it to COVID lung and rheumatoid arthritis (RA) synovium scRNA-seq datasets and highlight potential differences between inflammatory pathways at cell type level for control versus disease samples.

3.
Acta Pharm Sin B ; 12(9): 3594-3601, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176910

RESUMO

Increasing evidence suggests that the presence and spatial localization and distribution pattern of tumor infiltrating lymphocytes (TILs) is associate with response to immunotherapies. Recent studies have identified TGFß activity and signaling as a determinant of T cell exclusion in the tumor microenvironment and poor response to PD-1/PD-L1 blockade. Here we coupled the artificial intelligence (AI)-powered digital image analysis and gene expression profiling as an integrative approach to quantify distribution of TILs and characterize the associated TGFß pathway activity. Analysis of T cell spatial distribution in the solid tumor biopsies revealed substantial differences in the distribution patterns. The digital image analysis approach achieves 74% concordance with the pathologist assessment for tumor-immune phenotypes. The transcriptomic profiling suggests that the TIL score was negatively correlated with TGFß pathway activation, together with elevated TGFß signaling activity observed in excluded and desert tumor phenotypes. The present results demonstrate that the automated digital pathology algorithm for quantitative analysis of CD8 immunohistochemistry image can successfully assign the tumor into one of three infiltration phenotypes: immune desert, immune excluded or immune inflamed. The association between "cold" tumor-immune phenotypes and TGFß signature further demonstrates their potential as predictive biomarkers to identify appropriate patients that may benefit from TGFß blockade.

4.
NAR Genom Bioinform ; 4(3): lqac049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35855325

RESUMO

Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.

5.
Antib Ther ; 4(2): 109-122, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34396040

RESUMO

As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here, we leverage our expertise in computational antibody engineering to rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV-2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody-induced virus activation or enhancement, we suggest application of NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...